Slant Hankel Operators
نویسندگان
چکیده
منابع مشابه
Weighted slant Toep-Hank Operators
A $it{weighted~slant~Toep}$-$it{Hank}$ operator $L_{phi}^{beta}$ with symbol $phiin L^{infty}(beta)$ is an operator on $L^2(beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $beta={beta_n}_{nin mathbb{Z}}$ be a sequence of positive numbers with $beta_0=1$. A matrix characterization for an operator to be $it{weighte...
متن کاملkTH-ORDER SLANT TOEPLITZ OPERATORS ON THE FOCK SPACE
The notion of slant Toeplitz operators Bφ and kth-order slant Toeplitz operators B φ on the Fock space is introduced and some of its properties are investigated. The Berezin transform of slant Toeplitz operator Bφ is also obtained. In addition, the commutativity of kth-order slant Toeplitz operators with co-analytic and harmonic symbols is discussed.
متن کاملar X iv : m at h / 05 11 12 7 v 1 [ m at h . FA ] 5 N ov 2 00 5 Factorization theory for Wiener - Hopf plus Hankel operators with almost periodic symbols
A factorization theory is proposed for Wiener-Hopf plus Hankel operators with almost periodic Fourier symbols. We introduce a factorization concept for the almost periodic Fourier symbols such that the properties of the factors will allow corresponding operator factorizations. Conditions for left, right, or both-sided invertibility of the Wiener-Hopf plus Hankel operators are therefore obtained...
متن کاملLittle Hankel Operators between Bergman Spaces of the Right Half Plane
In this paper we consider a class of weighted integral operators on L2(0,∞) and show that they are unitarily equivalent to little Hankel operators between weighted Bergman spaces of the right half plane. We use two parameters α, β ∈ (−1,∞) and involve two weights to define Bergman spaces of the domain and range of the little Hankel operators. We obtained conditions for the Hankel integral opera...
متن کاملToeplitz and Hankel Operators on a Vector-valued Bergman Space
In this paper, we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces L2,C n a (D), where D is the open unit disk in C and n ≥ 1. We show that the set of all Toeplitz operators TΦ,Φ ∈ LMn(D) is strongly dense in the set of all bounded linear operators L(L2,Cn a (D)) and characterize all finite rank little Hankel operators.
متن کامل